Diagnostic Imaging Issues and Challenges

Alex H. Lumpkin Advanced Photon Source Argonne National Laboratory

Presented at the Future Light Source Workshop Working Group 7 April 6, 1999

Outline

- I. Introduction
- II. Experimental Background
- III. Examples of Demonstrations
 - Longitudinal Profiles
 - Transverse Profiles
 - Scaling Issues
- IV. Summary and Projections

Background on Relevant Parameters

Linac: Support efforts towards a few & self-amplified spontaneous emission (SASE) experiment

Emittance (σ , normalized) ~1-2 π mm mrad

Bunch Length (σ) ~100 fs

Peak Current ~1-5 kA

Energy Spread (σ_F/E) 2×10^{-4}

Beam Energy 10's of GeV

Storage Ring: Support efforts to a diffraction-limited soft x-ray source: $\varepsilon \le \lambda/4\pi$

Emittance (ϵ) ~10 x 10⁻¹² m rad

Beam Width (σ_x) ~10 μ m

Divergence $\sigma_{x'}$ ~1 μ rad

Bunch Length (σ) ~1 ps

Beam Stability <1 μm

Energy Spread <0.1%

Brilliance ~10²³

LCLS Undulator Electron Beam Parameters

H.-D. Nuhn et al., SSRL/SLAC

Energy:	4.5 GeV	14.4 GeV
Emittance (normal):	2π mm-mrad	1.5π mm-mrad
Charge/bunch:	1 nC	1 nC
Peak current:	3400 A pk	3400 A pk
Bunches/pulse:	1	1
Pulse rep rate:	10-120 Hz	10-120 Hz
Bunch radius:	37 μm rms	31 µm rms
Bunch divergence:	6.1 µrad	1.7 µrad
Bunch length:	20 µm rms	20 µm rms
	(67 fs rms)	•
dE/E (uncorrelated):	0.07%	0.02%
dE/E (correlated):	0.2%	0.1%

LCLS Undulator Photon Beam Parameters

H.-D. Nuhn et al., SSRL/SLAC

Electron energy:	4.5 GeV	14.4 GeV
Spontaneous Radiation:		
1st undulator peak: Peak power/pulse: Average power: Beam radius: Beam divergence: Critical energy:	15 Å (0.8 keV) 8.1 GW 0.27 W 52 μm rms 6.2 μrad rms 22 keV	1.5 Å (8.2 keV) 81 GW 2.7 W 33 μm rms 2 μrad rms 200 keV
FEL Radiation:		
Wavelength: Peak sat. power/pulse: Average saturation power: Peak brightness: Average brightness: Peak flux: Coherent photons/pulse: Beam radius:	15 Å (0.82 keV) 11 GW 0.36 W 1.2x10 ³² 0.42x10 ²² 81x10 ²⁴ ph/s 22x10 ¹² 37 µm rms	1.5 Å (8.2 keV) 9 GW 0.51 W 12x10 ³² 4.2x10 ²² 7.1x10 ²⁴ ph/s 2.0x10 ¹² 31 µm rms
Beam divergence: Pulse duration:	3.2 µrad rms 67 fs rms	0.38 µrad rms 67 fs rms

Examples of Recent Results "On the Path"

Beam Position Monitors (submicron)

- Linac: cavity-based BPM (SLAC)
- Storage ring rf BPM (APS)
 0.1 μm at 1 mA and 1 Hz BW

Beam Profile

- Transition Radiation Meas. at 3.25 GeV (P. Piot, CEBAF)
- Storage ring, x-ray pinhole (P. Ellaume, ESRF) $\epsilon_{\rm v} \sim$ 25 pm rad

Beam Divergence

- Linac beam at 650 MeV, ~50 μrad (calc.)
- Storage ring at 7 GeV, ~ ∮5 µrad (meas.)
 (Z. Cai, E. Gluskin et al., APS/XFD)

Bunch Length

- Linac beam at 50 fs using coherent transition radiation (Lihn, Stanford)
- Storage ring beam at few ps (ALS, ESRF)
- · Sub-ps streak cameras on market

Schematic of the S35 Sources and Beamlines

Top View

Operation Plan for the Diagnostic Undulator Beamline

Positron Beam Vertical Coupling	10%	1%	0.1%
$\beta_{\mathbf{y}}(\mathbf{m})$	10.1	10.1	10.1
Undulator Gap (mm)	15.5	12.3	12.3
X-ray energy (keV) ω_n	25.3	73.1	73.1
Harmonic number n	1	3	3
Ideal Undulator Photon Beam			
size (μm)	1.4	2.4	2.4
divergence (μrad)	2.9	1.7	1.7
Trajectory Random Walk			
size (μm)	0.9	0.9	0.9
divergence (µrad)	0.6	0.6	0.6
Optical Instrument Resolution	(pin-hole)		
size (μm)	30	9	1.5
divergence (µrad)	< 1.0	< 0.8	< 0.5
Total Instrument Resolution			
size (μm)	30	10	3
divergence (µrad)	< 3.1	< 2	< 1.9
Positron Beam			
vertical size (μm)	87	29	8.7
divergence (µrad)	8.6	2.8	0.9
Resolution / Beam Size			
vertical size	0.35	0.35	0.35
vertical divergence	0.36	0.71	2.1

SR BEAM DIVERGENCE MEASUREMENT (35-ID)

(After minimizing vertical divergence @ 25 mA, 6/16/97 2:30 PM)

SUMMARY OF MEASUREMENT*

	Horizontal Beam Size	Vertical Beam Size
Total measured value	870 μm	- 157 μm
Undulator cone	95 μm (2.6 μrad)	95 μm (2.6 μrad)
e ⁺ -beam	314 μm	34 μm
e ⁺ -beam divergence	806 μm (22 μrad)	122 μm (3.3 μrad)

^{*} The transverse beam size was measured at 36.5 m from the e⁺-beam waist. The beta functions were assumed to be at the design value: $\beta_x = 14.2$ m, $\beta_y = 10.1$ m.

TOTAL EMITTANCE = 7.1 ± 0.5 nm-rad VERTICAL COUPLING = 1.6%

Some Scaling Factors for the Diagnostics Undulator

APS Diagnostics Undulator Results:

- 7-GeV stored positron beam with 3.3 µrad divergence measured using about 2.4 mC integrated charge in the 30-ms CCD camera image
- Close ID gap from 34 mm with 0.2W in the fundamental to 14mm (6mm) to gain a factor of 10^3 (10^4) increase in power from the source
- Undulator on-axis, cone angle $\sim 1.2 \,\mu\text{rad}$ for E = 15 GeV, fundamental at 110 keV
- Use cryo-cooled or image intensified CCDs to gain 10² in sensitivity in detector
- Have low horizontal emittance as well for photon density enhancement at detector

Combined factors support measurements of about 1 μ rad for Q \cong 1nC beam at 15 GeV

POSSIBLE FOURTH-GENERATION SYNCHROTRON FACILITY USING SELF-AMPLIFIED SPONTANEOUS EMISSION (SASE) FELS

Some Issues for X-ray Streak Tubes

- Photocathode quantum efficiency for x rays (lower than for visible light)
- Photocathode robustness in the x-ray tube
- Geometry of the tube relative to high fields
- Vacuum integrity of the tube
- "Windowless" operation of the tube
- Separate vacuum pump-out system
- Angle in photoelectron trajectory to put the phosphor off-axis to transmitted x-rays

Some Chronology

- Motivations often lasers, time-resolved spectrometer, plasma, diagnostics, etc. because of the number of users
- Our motivation is to study sub-50μm beam spot sizes with ps-domain resolution. X-ray field provides better spatial resolution than visible
 - Development of single-sweep visible streak cameras using electro-optics
- ~ 1960s
- Extension of single-sweep streak camera to the soft x-ray regime
- ~ 1970s
- Developments of synchroscan and dual-sweep visible streak camera
- ~ 1980s
- Extension of synchroscan and dual-sweep features to the x-ray streak camera
- ~ 1990s

PRINCIPLE OF OPERATION OF A STREAK CAMERA

TRANSMITTED POWER SPECTRUM

POWER SPECTRA OF ABSORBED BM X-RAYS (BY 300A GOLD FILM)

X-Ray Streak Camera Data (Focus Mode)

X-Ray Streak Camera Data (Focus and Synchroscan Modes)

X-Ray Streak Camera Data (Single and Double Sweep)

Scaling Factors for the X-ray Streak Camera

X-ray streak camera results on 7-GeV stored beam:

A. Longitudinal

- 28-ps bunch length measured with 4 ps resolution
- Demonstrated resolution of 0.6 ps (σ) for UV light
- Potential resolution of 1.0 to 1.5 ps (σ) for hard x-rays using fastest sweep range on this tube
- Other hard x-ray tubes pushing into sub-ps resolution for laser-triggered techniques: ALS, Univ. of Mich.

Scaling Factors for the X-ray Streak Camera

X-ray streak camera results on 7-GeV stored beam: (Continued)

B. Transverse

- Estimated effective resolution about 15-20 μ m (σ) with 4-jaw aperture at $50 \times 50 \ \mu m^2$ size
- Could see 1-mA (~3nC) with averaging over many turns from bending magnet (BM)
- ID source strength greater than dipole
- CsI photocathodes are about 50 times more sensitive than Au photocathode, but not as robust. (May be area of development)
- X-ray microscope technique such as at ESRF beamline could work

Summary

Initial characterizations of a multi-GeV particle beam have been done with a unique x-ray streak camera. Both small transverse sizes ($< 50 \mu m$) and short bunches (30 ps with 4-ps resolution) have been measured. Even better resolutions are projected.

Potential Applications:

- Studies of small beams in third-generation storage rings (low vertical coupling)
- Studies of beams in R&D for fourth-generation light sources
- ps-domain diagnostics for time-resolved user experiments in the 10-eV to 10-20-keV regime

Table 1: Comparison of Beam Spot Sizes Using the YAG and OTR Converter Screens (June '98 Data)

Converter	ND Filter	I _B (mA)	X-Size (FWHM)(µ m)
OTR	0.0	30	90 ± 7
YAG	2.0	30	77 ± 7
OTR	0.5	60	68
YAG	2.5	60	70
OTR	0.8	107	84
YAG	2.8	107	114
OTR	0.8	150	95
YAG	2.8	150	125
OTR	1.0	220	103
YAG	2.8	220	205

The aspect ratio $^{\rm H}/_{\rm V}$ was $\sim ^{\rm 1}/_{\rm 10}$. ND = 0.3 is a factor of 2 in attenuation.

MEASURED BEAM SIZE VS. BEAM CURRENT

OTR Interference Pattern

650 MeV, Foil Spacing 125 cm, Divergence 30-130 μrad

OTR Interference Pattern

620-680 MeV, Foil Spacing 125 cm, Divergence 80 μrad

Table 1: Comparison of Diffraction Radiation (DR) Parameters for a 5 mm Radius Aperture and Various Representative Accelerators†

E (GeV)	γ	λ ^(l) (μm)	Linac
0.05	10 ²	250	BNL/ATF
0.5	10 ³	25	ANL/APS, Duke Upgrade, DESY
5.0	10 ⁴	2.5	Jefferson Lab (CEBAF)
50	10 ⁵	0.25	SLAC/LCLS

+Adapted from Table 1 of Rule, Fiorito, Kimura. Presented at BIW '96, Ref. 7

(1) Threshold DR wavelength for incoherent production.

Summary

Simplistically speaking we are on the path, but some development areas can be identified:

A. Bunch Length

- Challenge for visible or x-ray streak cameras for <100fs resolution for available signal in an e-beam micropulse. Measuring a photon beam at 1 Å is a development area that is already being addressed.
- Coherent radiation techniques need to move towards single-shot capability and the challenge to provide profile information realistically.

B. Transverse Profiles

- Provide sub-10 µm spatial resolution on a single shot (probably there)
- Provide a non-intercepting technique or sufficiently non-interfering-one. This is a development area.